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1 Applications of Baire’s Theorem I: The Open Mapping
Theorem

1.1 The open mapping theorem

Banach used Baire’s theorem to prove a number of striking results in functional analysis.
Recall Baire’s theorem.

Theorem 1.1 (Baire category). Let E be a complete metric space, and let (Fn)n∈N be
closed in E containing no interior points. Then the union

⋃∞
n=1 Fn has no interior points

either. Moreover, E 6=
⋃∞
n=1 Fn.

Definition 1.1. We say that A ⊆ E is of the first category (or meager) if there exists
a sequence Fn of closed sets without interior points such that A ⊆

⋃∞
n=1 Fn.

Theorem 1.2 (Banach, open mapping theorem). Let F1, F2 be Fréchet spaces, and let
T : F1 → F2 be linear continuous. Then either im(T ) ⊆ F2 is of the first category, or else
im(T ) = F2 and the mapping T is open.

Proof. Let U be an open neighborhood of 0 in F1. We claim that T (U) contains a neigh-
borhood of 0 in F2, provided im(T ) is not of the first category. Let V be a balanced neigh-
borhood of 0 in F1 such that V + V ⊆ U . Then V is absorbing (for x ∈ F1, λx ∈ V for
sufficiently small |λ|). So F1 =

⋃∞
n=1 nV means that im(T ) =

⋃∞
n=1 T (nV ) ⊆

⋃∞
n=1 T (nV ).

Since im(T ) is not of the first category, for some n, T (nV ) = nT (V ) has an interior point.
Then T (V ) has an interior point. So there exists y ∈ F2 and a neighborhood W of 0 in F2

such that {y}+W ⊆ T (V ). Then y ∈ T (V ). V = −V since V is balanced, so −y ∈ T (V ).

So W ⊆ T (V ) + {−y} ⊆ (T (V )− T (V )) = T (V )− T (V ). We get W ⊆ T (V + V ) ⊆ T (U),
as claimed.

Let dF1 be a translation invariant metric on F1 generating the topology on F1, and define
dF2 similarly. Thus, for any r > 0, there exists ρ > 0 such that BF2(0, ρ) ⊆ T (BF1(0, r)).
The metrics dF1 , dF2 are translation invariant, so for any r > 0, there exists a ρ > 0 such
that for any x ∈ F1, BF2(Tx, ρ) ⊆ T (BF1(x, r)). Let r > 0 be arbitrary and let rn = r/2n
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for n ∈ N . We get the corresponding ρn sequence such that BF2(Tx, ρn) ⊆ T (BF1(x, rn))
for all x ∈ F1. We can arrange so that ρn ↓ 0.

Let y ∈ BF2(Tx, ρ0). We shall show that there is an x′ ∈ F1 such that dF1(x, x′) ≤
2r and y = Tx′. Let x1 ∈ BF1(x, r0) be such that dF2(y, Tx1) < ρ1 ⇐⇒ y ∈
BF2(Tx1, ρ1) ⊆ T (BF1(x1, r1)). Let x2 ∈ BF1(x1, r1) be such that dF2(y, Tx2) < ρ2.
Then y ∈ BF2(Tx2, ρ2) ⊆ T (BF1(x2, r2)). Continuing in this fashion, we get a sequence
(xn) in F1 such that xn+1 ∈ T (BF1(xn, rn)). Then (xn) is a Cauchy sequence in F1, and
dF2(y, Txn) < ρn → 0. We get xn → x′ ∈ F1, where dF1(x, x′) ≤ 2r, and, since T is
continuous, Txn → Tx′. So y = Tx′.

So we get that for all r > 0, there exists ρ > 0 such that BF2(Tx, ρ) ⊆ T (BF1(x, 2r)).
Hence, im(T ) = F2, and T is open.

Corollary 1.1. Let T : F1 → F2 be an injective, linear, continuous map between Frèchet
spaces. Then either the range of T is of the first category, or im(T ) = F2, and T is a
homeomorphism.

1.2 Application of the open mapping theorem to partial differential equa-
tions

Let P (D) =
∑
|α|≤m aαD

α, where Dα = Dα1
x1 · · ·D

αn
xn and Dxj = (1/i)∂xj be a partial

differentiation operator (on Rn) with constant coefficients aα ∈ C. Assume that for some
open set Ω ⊆ Rn, every solution u ∈ Cm(Ω) of Pu = 0 is in fact in Cm+1(Ω) (e.g.
P = ∆, the Laplacian). Then we have Im(ζ)→∞ if ζ →∞ on the suface in Cn given by
0 = P (ζ) =

∑
|α|≤m aαζ

α. We will do this in detail next time.
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